Your browser doesn't support javascript.
loading
: 20 | 50 | 100
1 - 20 de 118
1.
Environ Sci Technol ; 58(15): 6670-6681, 2024 Apr 16.
Article En | MEDLINE | ID: mdl-38564406

The underlying adaptative mechanisms of anammox bacteria to salt stress are still unclear. The potential role of the anammoxosome in modulating material and energy metabolism in response to salinity stress was investigated in this study. The results showed that anammox bacteria increased membrane fluidity and decreased mechanical properties by shortening the ladderane fatty acid chain length of anammoxosome in response to salinity shock, which led to the breakdown of the proton motive force driving ATP synthesis and retarded energy metabolism activity. Afterward, the fatty acid chain length and membrane properties were recovered to enhance the energy metabolic activity. The relative transmission electron microscopy (TEM) area proportion of anammoxosome decreased from 55.9 to 38.9% under salinity stress. The 3D imaging of the anammox bacteria based on Synchrotron soft X-ray tomography showed that the reduction in the relative volume proportion of the anammoxosome and the concave surfaces was induced by salinity stress, which led to the lower energy expenditure of the material transportation and provided more binding sites for enzymes. Therefore, anammox bacteria can modulate nitrogen and energy metabolism by changing the membrane properties and morphology of the anammoxosome in response to salinity stress. This study broadens the response mechanism of anammox bacteria to salinity stress.


Anaerobic Ammonia Oxidation , Bacteria , Anaerobiosis , Bacteria/metabolism , Fatty Acids/metabolism , Salt Stress , Oxidation-Reduction , Salinity , Nitrogen/metabolism
2.
J Environ Manage ; 356: 120591, 2024 Apr.
Article En | MEDLINE | ID: mdl-38490008

Research on the potential for chemical energy recovery and the optimization of recovery pathways in different regions of China is still lacking. This study aimed to address this gap by evaluating the potential and optimize the utilization pathways for chemical energy recovery in various regions of China for achieving sustainable wastewater treatment. The results showed that the eastern and northeastern regions of China exhibited higher chemical energy levels under the existing operating conditions. Key factors affecting chemical energy recovery included chemical oxygen demand removal (ΔCOD), treatment scale, and specific energy consumption (µ) of wastewater treatment plants (WWTPs). Furthermore, the average improvement in the chemical energy recovery rate with an optimized utilization pathway was approximately 40% in the WWTPs. The use of the net-zero energy consumption (NZE) model proved effective in improving the chemical energy recovery potential, with an average reduction of greenhouse gas (GHG) emissions reaching next to 95% in the investigated WWTPs.


Environmental Pollutants , Water Purification , Wastewater , Waste Disposal, Fluid/methods , Water Purification/methods , China
3.
Sci Total Environ ; 924: 171530, 2024 May 10.
Article En | MEDLINE | ID: mdl-38453092

Anaerobic ammonium-oxidation (anammox) bacteria play a crucial role in global nitrogen cycling and wastewater nitrogen removal, but they share symbiotic relationships with various other microorganisms. Functional divergence and adaptive evolution of uncultured bacteria in anammox community remain underexplored. Although shotgun metagenomics based on short reads has been widely used in anammox research, metagenome-assembled genomes (MAGs) are often discontinuous and highly contaminated, which limits in-depth analyses of anammox communities. Here, for the first time, we performed Pacific Biosciences high-fidelity (HiFi) long-read sequencing on the anammox granule sludge sample from a lab-scale bioreactor, and obtained 30 accurate and complete metagenome-assembled genomes (cMAGs). These cMAGs were obtained by selecting high-quality circular contigs from initial assemblies of long reads generated by HiFi sequencing, eliminating the need for Illumina short reads, binning, and reassembly. One new anammox species affiliated with Candidatus Jettenia and three species affiliated with novel families were found in this anammox community. cMAG-centric analysis revealed functional divergence in general and nitrogen metabolism among the anammox community members, and they might adopt a cross-feeding strategy in organic matter, cofactors, and vitamins. Furthermore, we identified 63 mobile genetic elements (MGEs) and 50 putative horizontal gene transfer (HGT) events within these cMAGs. The results suggest that HGT events and MGEs related to phage and integration or excision, particularly transposons containing tnpA in anammox bacteria, might play important roles in the adaptive evolution of this anammox community. The cMAGs generated in the present study could be used to establish of a comprehensive database for anammox bacteria and associated microorganisms. These findings highlight the advantages of HiFi sequencing for the studies of complex mixed cultures and advance the understanding of anammox communities.


Anaerobic Ammonia Oxidation , Sewage , Oxidation-Reduction , Sewage/microbiology , Bacteria/genetics , Bacteria/metabolism , Nitrogen/metabolism , Bioreactors/microbiology
4.
Sci Total Environ ; 914: 170002, 2024 Mar 01.
Article En | MEDLINE | ID: mdl-38220024

The motility behaviors at the individual-cell level and the collective physiological responsive behaviors of aerobic denitrifier, Enterobacter cloacae strain HNR under high salt stress were investigated. The results revealed that as salinity increased, electron transport activity and adenosine triphosphate content decreased from 15.75 µg O2/g/min and 593.51 mM/L to 3.27 µg O2/g/min and 5.34 mM/L, respectively, at 40 g/L, leading to a reduction in the rotation velocity and vibration amplitude of strain HNR. High salinity stress (40 g/L) down-regulated genes involved in ABC transporters (amino acids, sugars, metal ions, and inorganic ions) and activated the biofilm-related motility regulation mechanism in strain HNR, resulting in a further decrease in flagellar motility capacity and an increase in extracellular polymeric substances secretion (4.08 mg/g cell of PS and 40.03 mg/g cell of PN at 40 g/L). These responses facilitated biofilm formation and proved effective in countering elevated salt stress in strain HNR. Moreover, the genetic diversity associated with biofilm-related motility regulation in strain HNR enhanced the adaptability and stability of the strain HNR populations to salinity stress. This study enables a deeper understanding of the response mechanism of aerobic denitrifiers to high salt stress.


Enterobacter cloacae , Salt Stress , Enterobacter cloacae/genetics , Biofilms , Extracellular Polymeric Substance Matrix , Ions , Stress, Physiological
5.
Environ Sci Pollut Res Int ; 30(59): 124407-124415, 2023 Dec.
Article En | MEDLINE | ID: mdl-37966645

Organotin compounds (OTs) accumulate in fish easily, however, research on their influencing factors is still limited. This study collected 25 species of fish with different diets, habitats, and age from the Three Gorges Reservoir (TGR), the largest deep-water river channel-type reservoir in China, and analyzed the accumulation characteristics of OTs in these fish. The results showed that tributyltin (TBT) and triphenyltin (TPhT) were the dominant OTs in fish from the TGR. The correlation between OTs concentration and age, body length, and body weight varied with fish species. The concentrations of TBT and TPhT in carnivorous fish (mean, 25.78 and 11.69 ng Sn/g dw, respectively) were higher than those in other diet fish (P<0.01), but there was no significant difference in fish at different habitat water layers (P>0.05). In addition, the degradation rates of TBT and TPhT in different fish species were all below 50%. In summary, the accumulation of TBT and TPhT in fish is mainly influenced by diet, and both TBT and TPhT were difficult to degrade in fish. These results reveal the pollution characteristics of OTs in fish from the TGR, and can improve our understanding of the factors influencing TBT and TPhT accumulation in freshwater fish.


Organotin Compounds , Trialkyltin Compounds , Water Pollutants, Chemical , Animals , Trialkyltin Compounds/metabolism , Fishes/metabolism , China , Environmental Monitoring , Water , Water Pollutants, Chemical/analysis
6.
J Environ Manage ; 347: 119047, 2023 Dec 01.
Article En | MEDLINE | ID: mdl-37778070

As a highly promising treatment technology for wastewater, long start-up time is one of the bottlenecks hindering the widespread application of aerobic granular sludge (AGS). This study focused on exploring the possibility of alternating organic loading rate (OLR) in promoting AGS granulation. Under alternating OLR (3.6-14.4 kgCOD/m3·d), AGS granulation was significantly accelerated. The mean granule size under alternating load reached 234.6 µm at 17 d, while under constant OLR (7.2 kgCOD/m3·d), the mean granule size was only 179.2 µm. Moreover, the granule size maintained continuous growth even when the alternating OLR was changed to constant OLR. Alternating load significantly increased the content of extracellular polymeric substances (EPS), especially proteins (PN) in tightly bound EPS (TB-EPS), which was likely the main reason for accelerating AGS granulation. Moreover, alternating load reduced the hydrophilicity of EPS and promoted the content of proteins secondary structures that favored aggregation in TB-EPS, which were also beneficial for granulation. Microbial community results showed that alternating load might promote the enrichment of EPS producing bacteria, such as Thauera, Brevundimonas and Shinella. Meanwhile, the content of enzymes that regulated amino acids metabolism also increased under alternating load, which might be related to the increase of PN in EPS. These results further demonstrated that alternating load promoted granulation through EPS.


Bioreactors , Sewage , Bioreactors/microbiology , Wastewater , Aerobiosis , Acceleration , Waste Disposal, Fluid/methods
7.
Water Res ; 238: 120016, 2023 Jun 30.
Article En | MEDLINE | ID: mdl-37146397

Anammox bacteria rely heavily on iron and have many iron storage sites. However, the biological significance of these iron storage sites has not been clearly defined. In this study, we explored the properties and location of iron storage sites to better understand their cellular function. To do this, the Candidatus Kuenenia stuttgartiensis iron storage protein, bacterioferritin (K.S Bfr), was successfully expressed and purified. In vitro, correctly assembled globulins were observed by transmission electron microscopy. The self-assembled K.S Bfr has active redox and can bind Fe2+ and mineralize it in the protein cavity. In vivo, engineered bacteria with K.S Bfr showed good adaptability to Fe2+, with a survival rate of 78.9% when exposed to 5 mM Fe2+, compared with only 66.0% for wild-type bacteria lacking K.S Bfr. A potential iron regulatory strategy similar to that of Anammox was identified in transcriptomic analysis of engineered bacteria. This system may be controlled by the iron uptake regulator Furto transport Fe2+ via FeoB and store excess Fe2+ in K.S Bfr to maintain cellular homeostasis. K.S Bfr has superior iron storage capacity both intracellularly and in vitro. The discovery of K.S Bfr reveals the storage location of iron-rich nanoparticles, increases our understanding of the adaptability of iron-dependent bacteria to Fe2+, and suggests possible iron regulation strategies in Anammox bacteria.


Ferritins , Iron , Iron/metabolism , Ferritins/chemistry , Ferritins/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Bacteria/metabolism , Oxidation-Reduction , Homeostasis
8.
J Hazard Mater ; 445: 130570, 2023 03 05.
Article En | MEDLINE | ID: mdl-37055976

This study investigated the behavior of veterinary antibiotics (VAs) in a small farm ecosystem. Manure and environmental samples were collected around a large pig farm in northeast China. Thirty-four VAs in six categories were analyzed. Then, a multimedia fugacity model was used to estimate the fates of VAs in the environment. The results showed that VAs were prevalent in manure, soil, water, and sediment, but not in crops. Compared with fresh manure, VA levels were significantly lower in surface manure piles left in the open air for 3-6 months. The main VAs, tetracyclines and quinolones, decreased by 427.12 and 158.45 µg/kg, respectively. VAs from manure piles were transported to the surroundings and migrated vertically into deep soil. The concentrations of ∑VAs detected in agricultural soils were 0.03-4.60 µg/kg; > 94% of the mass inventory of the VAs was retained in soil organic matter (SOM), suggesting that SOM is the main reservoir for antibiotics in soil. Risk assessment and model analysis indicated that the negative impact of mixed antibiotics at low concentrations in farmland on crops may be mediated by indirect effects, rather than direct effects. Our findings highlight the environmental fates and risks of antibiotics from livestock farms.


Anti-Bacterial Agents , Environmental Monitoring , Soil Pollutants , Veterinary Drugs , Animals , Anti-Bacterial Agents/analysis , China , Crops, Agricultural , Ecosystem , Environmental Monitoring/methods , Farms , Manure/analysis , Soil , Soil Pollutants/analysis , Swine , Veterinary Drugs/analysis
9.
J Hazard Mater ; 448: 130941, 2023 04 15.
Article En | MEDLINE | ID: mdl-36758433

Pseudomonas aeruginosa causes public health problems in drinking water systems. This study investigated the potential role of the stringent response in regulating the adaptive physiological metabolic behaviors of P. aeruginosa to low nitrogen stress and bacterial competition in drinking water systems. The results indicated that guanosine tetraphosphate (ppGpp) concentrations in P. aeruginosa increased to 135.5 pmol/g SS under short-term nitrogen deficiency. Meanwhile, the expression levels of the ppGpp synthesis genes (ppx, relA) and degradation gene (spoT) were upregulated by 37.0% and downregulated by 26.8%, respectively, indicating that the stringent response was triggered. The triggered stringent response inhibited the growth of P. aeruginosa and enhanced the metabolic activity of P. aeruginosa to adapt to nutrient deprivation. The interspecific competition significantly affected the regulation of the stringent response in P. aeruginosa. During short-term nitrogen deficiency, the extracellular polymeric substances concentration of P. aeruginosa decreased significantly, leading to desorption and diffusion of attached bacteria and increased ecological risks. The regulatory effect of stringent response on P. aeruginosa gradually weakened under long-term nitrogen deficiency. However, the expression of pathogenic genes (nalD/PA3310) and flagellar assembly genes (fliC) in P. aeruginosa was upregulated by the stringent response, which increased the risk of disease.


Drinking Water , Pseudomonas aeruginosa , Pseudomonas aeruginosa/metabolism , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , Guanosine Tetraphosphate/genetics , Guanosine Tetraphosphate/metabolism , Nitrogen/metabolism , Bacteria/metabolism , Gene Expression Regulation, Bacterial
10.
Environ Res ; 216(Pt 3): 114649, 2023 01 01.
Article En | MEDLINE | ID: mdl-36309212

The nutrient supply to the freshwater system may be changed by rainfall, which also encourages the cyclic succession of microorganisms. However, in a highly dynamic land-water reservoir, the microbial metabolic changes brought on by the changes of water nutrients following rainfall are not clearly documented. The study selected the Three Gorges Reservoir (TGR) backwater region during algal bloom seasons as the study area and time, and used the Biolog-EcoPlates technique to examine the heterotrophic metabolism conditions of the water before and after rain. The field monitoring assessed how biotic and abiotic variables affected CO2 flux at the water-air interface. The tests conducted in the laboratory investigated the water-integrated metabolic process was affected by post-rainfall environmental changes. The results showed that the average flux of CO2 at the water-air interface before rainfall was -489.17 ± 506.66 mg·(m2·d)-1, while the average CO2 flux reached 393.35 ± 793.49 mg·(m2·d)-1 after rainfall. This is mostly explained by the heterotrophic metabolic variability of plankton in response to changes in the aqueous environment brought on by precipitation. These discoveries help us better understand how biological metabolisms after rain affect the CO2 flux at the water-air interface and reservoir greenhouse gas (GHG) emission equivalents can be evaluated more accurately.


Carbon Dioxide , Plankton , Carbon Dioxide/analysis , Eutrophication , Fresh Water , Seasons , Water , China , Environmental Monitoring
11.
Huan Jing Ke Xue ; 43(10): 4630-4638, 2022 Oct 08.
Article Zh | MEDLINE | ID: mdl-36224148

Phosphatases play important roles in converting organic phosphorus into inorganic phosphorus in soil. However, studies from this perspective on the water-level-fluctuation zone (WLFZ) of the Three Gorges Reservoir are limited. In this study, phosphatase activity and the forms of phosphorus were analyzed. Soil samples were collected in the river basin of the Penxi River in the WLFZ during a drying period. The correlation between phosphatase activity and phosphorus forms and the impacts of phosphatase activity on the phosphorus forms were analyzed. The results showed that the contents of H2O-Pi, NaHCO3-Pi, and NaOH-Pi in the soils of the WLFZ were higher than those in the soils by the river. In addition, a higher altitude resulted in higher contents of bio-enzymatically hydrolysable phosphorus and NaOH-Po. Furthermore, redundancy analysis (RDA) showed that the contents of organic matter and amorphous Fe and Mn were the main factors affecting soil organic phosphorus forms. The average activities of acid phosphomonoesterase (ACP), alkaline phosphomonoesterase (ALP), phosphodiesterase (PDE) (all in p-NP), and phytase (PAE) (in P) in the soils of the WLFZ were 1.40, 2.60, 0.44, and 11.43 µmol·(g·h)-1, respectively. Moreover, the activities of different phosphatases increased with altitude. Soil plant biomass and microbial biomass were important reasons for the difference in spatial distribution of phosphatase activity in the soil of the WLFZ. Phosphatase activities were significantly positively correlated with the contents of organic phosphorus forms but negatively correlated with the content of bioavailable phosphorus. A higher soil phosphatase activity and a lower content of bioavailable phosphorus were usually detected in soil samples taken at a higher altitude. In the early stage of flooding, phosphatase converted organic phosphorus into inorganic phosphorus at a relatively high rate, and the risk of phosphorus release to the overlying water body was also high. This study contributed to a comprehensive understanding of the geochemical cycle of soil phosphorus in the soil of the WLFZ.


6-Phytase , Phosphorus , Altitude , China , Phosphoric Diester Hydrolases , Phosphorus/analysis , Rivers , Sodium Hydroxide/analysis , Soil/chemistry , Water/analysis
12.
J Hazard Mater ; 440: 129787, 2022 10 15.
Article En | MEDLINE | ID: mdl-36007364

Hydroxylamine (NH2OH) is a potentially toxic pollutant when it is present in water, as it can damage both bacteria and the human body. It is still difficult to eliminate the toxic NH2OH in water. Here, we showed that the model bacterium (Escherichia coli) with nanocompartments encapsulated with hydroxylamine oxidase (HAO) can remove NH2OH from water. In addition, the removal efficiency of NH2OH by genetically modified bacteria (with HAO-nanocompartments) was 3.87 mg N L-1 h-1, and that of wild-type bacteria (without HAO-nanocompartments) was only 1.86 mg N L-1 h-1. Label-free quantitative proteomics indicated that the nanocompartments containing HAO enhanced bacterial activity by inducing the up-regulation of proteins involved in stress and stimulus responses, and decreased their intracellular NH2OH concentration. Moreover, the synthesis of proteins involved in energy metabolism, gene expression, and other processes in bacterial was enhanced under hydroxylamine stress, and these changes increased the resistance of bacterial to NH2OH. This work can aid our understanding of the toxic effects of NH2OH on bacteria as well as the development of new approaches to eliminate NH2OH in water.


Hydroxylamine , Oxidoreductases , Water Pollutants, Chemical , Bacteria/metabolism , Hydroxylamine/metabolism , Oxidation-Reduction , Oxidoreductases/metabolism , Proteomics , Water Pollutants, Chemical/metabolism
13.
Sci Total Environ ; 845: 157276, 2022 Nov 01.
Article En | MEDLINE | ID: mdl-35835194

Triphenyltin (TPhT) and tributyltin (TBT) remain widely present in various aquatic environments despite restrictions on their use in many countries for many years. The biomagnification of these compounds in the aquatic food web remains controversial. This study reports the bioaccumulation of TPhT and TBT in aquatic animals in the Three Gorges Reservoir (TGR), a deep-water river channel-type reservoir and the largest reservoir in China. We measured TPhT, TBT and their metabolites in 2 invertebrates, 27 fish and the aquatic environment. The logarithmic bioaccumulation factors of TPhT and TBT were 4.37 and 3.77, respectively, indicating that TPhT and TBT were enriched in organisms of the TGR. Both TPhT and TBT concentrations were significantly and positively correlated with trophic level, with trophic magnification factors of 3.71 and 3.63, respectively, indicating that TPhT and TBT exhibited similar trophic enrichment in the freshwater food web of the TGR. The results of health risk assessment showed that although all hazard index (HI) values were <1, more attention should be paid to the health risk to children associated with consumption of aquatic products (HI = 0.67). This study provides powerful evidence of trophic enrichment of TPhT and TBT in a freshwater food web in a deep-water river channel-type reservoir and provides valuable data regarding organotins in aquatic animals in the TGR.


Organotin Compounds , Water Pollutants, Chemical , Animals , China , Environmental Monitoring/methods , Food Chain , Rivers , Water , Water Pollutants, Chemical/analysis
14.
Bioresour Technol ; 361: 127712, 2022 Oct.
Article En | MEDLINE | ID: mdl-35908635

A bacterial image analysis system based on surface plasmon resonance imaging was established to investigate the effect of bacterial motility on biofilm formation under high ammonia nitrogen at the single-cell level. The results showed that the bacterial mean rotation speed and vertical motility distance decreased with the increasing concentration of ammonia nitrogen. Ammonia nitrogen inhibited the metabolic activity of the bacteria, decreasing bacterial motility. Bacterial motility was negatively correlated with the biofilm-formation ability. The biofilm formation ability of Enterobacter cloacae strain HNR exposed to ammonia nitrogen was enhanced by reducing its movement and promoting EPS secretion. Genes related to the tricarboxylic acid cycle and oxidative phosphorylation were down-regulated, indicating inhibition of microbial energy metabolism. Genes related to bacterial secretion and lipopolysaccharide synthesis were up-regulated, facilitating the formation of biofilms and enabling the bacteria to resist ammonia nitrogen stress. This study provides new insights into the biofilm formation under ammonia stress.


Ammonia , Wastewater , Ammonia/metabolism , Bacteria/metabolism , Bacteria, Aerobic/metabolism , Biofilms , Bioreactors/microbiology , Denitrification , Nitrogen/metabolism , Surface Plasmon Resonance , Wastewater/microbiology
15.
Environ Res ; 212(Pt C): 113284, 2022 09.
Article En | MEDLINE | ID: mdl-35504342

Greenhouse gas (GHG) mitigation in wastewater treatment sector is indispensable in China's carbon neutral target. As an important component of wastewater system, sludge generation is rapidly increased with the acceleration of urbanization in China. It is crucial to investigate the carbon footprint of various sludge management strategies and quantify the potential optimization of GHG reduction effect at national scale. Therefore, this study conducted a comprehensive analysis of sludge distribution and GHG profiles of various sludge systems. The overall dry sludge generation in China is 12.15 Mt, with spatial resolution at city level. Different sludge treatment options were categorized into four types: energy recovery, nutrient recovery (e.g. phosphorus and nitrogen), material valorisation (e.g. brick, biochar) and conventional disposal. With various sludge treatment options, the GHG profile of annual sludge management in China ranges from -35.86 Mt/year to 57.11 Mt/year. The best GHG mitigation can be achieved through energy recovery by co-incineration system and the greatest reduction opportunity is concentrated in highly urbanized regions, such as Yangtze River Delta, Pearl River Delta, and Beijing-Tianjin-Hebei urban agglomerations.


Greenhouse Gases , Sewage , China , Greenhouse Effect , Incineration
16.
J Hazard Mater ; 435: 128954, 2022 08 05.
Article En | MEDLINE | ID: mdl-35462189

Zn2+ is largely discharged from many industries and poses a severe threat to the environment, making its remediation crucial. Encapsulins, proteinaceous nano-compartments, may protect cells against environmental stresses by sequestering toxic substances. To determine whether hemerythrin-containing encapsulins (cEnc) from anammox bacteria Ca. Brocadia fulgida can help cells deal with toxic substances such as Zn2+, we transferred cEnc into E.coli by molecular biology technologies for massive expression and then cultured them in media with increasing Zn2+ levels. The engineered bacteria (with cEnc) grew better and entered the apoptosis phase later, while wild bacteria showed poor survival. Furthermore, tandem mass tag-based quantitative proteomic analysis was used to reveal the underlying regulatory mechanism by which the genetically-engineered bacteria (with cEnc) adapted to Zn2+ stress. When Zn2+ was sequestered in cEnc as a transition, the engineered bacteria presented a complex network of regulatory systems against Zn2+-induced cytotoxicity, including functions related to ribosomes, sulfur metabolism, flagellar assembly, DNA repair, protein synthesis, and Zn2+ efflux. Our findings offer an effective and promising stress control strategy to enhance the Zn2+ tolerance of bacteria for Zn2+ remediation and provide a new application for encapsulins.


Bacteria , Proteomics , Bacteria/metabolism , Escherichia coli/genetics , Escherichia coli/metabolism , Oxidation-Reduction , Zinc/metabolism , Zinc/toxicity
17.
Sci Total Environ ; 834: 155361, 2022 Aug 15.
Article En | MEDLINE | ID: mdl-35460793

Organophosphate esters (OPEs) in the environment have been the focus of increasing attention due to their ubiquity and potential toxicity. However, there is little information on the occurrence and characteristics of OPEs in rural areas, especially those with cold year-round temperatures and frozen soil in winter. In this study, environmental samples were collected, in summer and winter, from villages and towns in Northeast China differing in the types and intensities of their anthropogenic activities. The samples were analyzed for 12 OPEs. The results showed the widespread presence of alkyl-OPEs, Cl-OPEs, and aryl-OPEs in the water, soil, snow, and ice of the study sites. In summer, tris(1-chloro-2-propyl) phosphate (TCPP) and tris(2-chloroethyl) phosphate (TCEP) were the primary compounds in water and soil, respectively. The ∑12OPE concentration in three villages varied from 46.26 to 257.37 ng/L in water, and from 6.62 to 19.46 ng/g in soils. The ∑12OPE concentrations in water were lower in winter than summer, but conversely, ∑12OPE concentrations in frozen soils in winter were higher than those in soils in summer. In winter, there was a shift in the predominant OPEs in water and frozen soils, with dominance of TCEP and complex compounds, respectively. Obvious seasonal characteristics of the potential sources and ecological risks of OPEs in these areas were also determined, with more complex sources of OPEs seen in summer than winter. In summer, only 2-ethylhexyl diphenyl phosphate (EHDPP) in water posed a potential risk, while in summer and, especially, in winter, EHDPP and tris(2-ethylhexyl) phosphate posed potential risks in soils. The high ∑12OPE concentration in snow (56.77 ng/L) implied that wet deposition can amplify OPEs in other environmental compartments. This is the first systematic report on OPEs in a cold rural area. Our findings highlight the need for seasonal monitoring of OPEs in similar areas.


Flame Retardants , China , Environmental Monitoring/methods , Esters , Flame Retardants/analysis , Organophosphates , Phosphates , Seasons , Soil , Water
19.
Water Res ; 212: 118096, 2022 Apr 01.
Article En | MEDLINE | ID: mdl-35085842

The microcosmic mechanisms underlying filamentous bulking remain unclear. The role of extracellular polymeric substances (EPS) governed by quorum sensing (QS) in deteriorating sludge floc stability and structure during filamentous bulking and the feasibility of using quorum quenching (QQ) to maintain sludge floc stability and structure and sludge settling were investigated in this study. The results indicated that the concentration of C6HSL increased from 22.08±3.22 ng/g VSS to 81.42±5.98 ng/g VSS during filamentous bulking. The filamentous bacteria gradually evolved the hdtS gene related to the synthesis of C6HSL with increases in the population density. Triggered QS by filamentous bacteria proliferation induced variation in the composition and structure of EPS within the sludge flocs. The proteins (PN) content of the EPS increased evidently from 40.06 ± 2.41 mg/g VSS to 110.32 ± 4.32 mg/g VSS, and the polysaccharides (PS) content slightly increased during filamentous bulking. The upregulated proteins in the EPS led to a decrease in the relative hydrophobicity of the sludge and an increase in negative surface charge. The α-helix/(ß-sheet+random coil) ratio evidently increased from 0.76 to 0.99 during filamentous bulking, revealing that the proteins were tightly structured, which prevented the exposure of inner hydrophobic groups. The total energy of the interaction (WT) between bacteria increased during sludge bulking, which resulted in the weakening of sludge aggregation. Variation in the physicochemical properties of EPS induced by QS in the filamentous bacteria markedly restrained adhesion between the filamentous bacteria and floc-forming bacteria. The production of PN in the EPS and the expression of the hdtS gene were inhibited by vanillin, which served as a QS inhibitor. The WT between bacteria with 50 mg/L of vanillin basically did not change. Filamentous bulking was significantly inhibited by the addition of vanillin. Therefore, QQ is a potential strategy for the prevention and control of filamentous bulking. This study provides new information regarding the microcosmic mechanisms of filamentous bulking.


Quorum Sensing , Sewage , Bacteria , Bioreactors , Hydrophobic and Hydrophilic Interactions , Waste Disposal, Fluid
20.
Sci Total Environ ; 806(Pt 3): 151348, 2022 Feb 01.
Article En | MEDLINE | ID: mdl-34728211

Organophosphate esters (OPEs) are widely used flame retardants that are frequently released into the environment, causing potential harm to humans and ecosystems. Tibet is located on the Tibetan Plateau, known as the "roof of the world", but the occurrence of OPEs in Tibet remains unclear. This is the first report of the occurrence, potential sources and risks of 12 OPEs in water, soil, sediment and snow from Xainza, a typical town at high-elevation in Tibet (average elevation = 4700 m). Ten OPEs were observed, with ∑OPE concentrations of 46.45-1744.73 ng/L in surface water, 29.74-73.85 ng/g in soil, and 13.30-32.23 ng/g in sediment. Moreover, the mean ∑OPE concentration in snow was 413.90 ng/L. Tris (2-chloroethyl) phosphate (TCEP) and tris (2-chloroisopropyl) phosphate (TCPP) were the main OPEs in surface water and snow, while 2-ethylhexyl diphenyl phosphate (EHDPP) was dominant in soil and sediment. Local human activities and long-distance atmospheric transport may be the main sources of OPEs in Xainza. The assessment of ecological risk indicated that EHDPP in soil poses potential risk. The occurrence of OPEs in Xainza showed that more attention should be paid to persistent organic pollutants in high-elevation regions.


Environmental Monitoring , Flame Retardants , China , Ecosystem , Esters , Flame Retardants/analysis , Humans , Organophosphates , Tibet
...